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The purpose of the present study is to characterize the process of laminar-turbulent 
transition at Reynolds numbers which are subcritical from the two-dimensional 
linear point of view. The development of a point-like disturbance was studied in an 
air flow channel with hot-wire anemometry at  a Reynolds number of 1600. Localized 
disturbances were triggered at one of the walls and their development followed 
downstream by traversing the hot-wire probe in the streamwise direction over a 
distance of 90 half channel heights, as well as in the normal and spanwise directions. 
The disturbance evolved into elongated streaky structures with strong spanwise 
shear (i.e. normal vorticity) which grew in amplitude and streamwise extension and 
thereafter either decayed or gave rise to a turbulent spot. The results indicate that 
the mechanism underlying the initial growth is a linear one resulting from the 
coupling between the normal velocity and the normal vorticity, as described by the 
three-dimensional linear equations. The nonlinear development of the structure leads 
to the formation of intense normal shear layers and the appearance of oscillations 
and ‘spikes’, which multiply and form the rear or a turbulent spot. 

1. Introduction 
Natural transition is often thought of as the result of a localized, transient 

disturbance which may trigger the growth of unstable waves. Classical Orr- 
Sommerfeld theory deals with the stability of linear Tollmien-Schlichting (TS) 
waves with a definite frequency or wavenumber at  a given Reynolds number. In the 
flat-plate boundary layer, the propagation velocity of neutrally stable TS waves is 
typically about 40% of the free-stream velocity (U,). According to the so-called 
Squire theorem, a three-dimensional (3D) TS wave can be transformed into a 
corresponding two-dimensional (2D) wave which becomes unstable further upstream, 
implying that, at a given downstream position, the 2D wave will have gained a larger 
amplitude than the 3D wave and is therefore most likely to be observed 
experimentally. Two-dimensional waves with a definite frequency can be artificially 
generated by a vibrating ribbon which induces a TS wave in the boundary layer. 
However, the experiments by Klebanoff, Tidstrom & Sargent (1962) showed that 
there is a strong tendency for the flow to develop a 3D structure before transition to 
turbulence occurs. Nonlinear interactions between 2D and 3D waves then lead to the 
formation of A -shaped vortex structures. Depending on the amplitude of the 2D 
wave, these may either appear in an aligned or in a staggered configuration. The 
aligned configuration is the result of the interaction of a finite amplitude TS wave 
with 3D wave components with the same (fundamental) frequency. This was the case 
observed by Klebanoff et al. Transition is preceded by the formation of 3D travelling 
high-shear layers, which are associated with a strong inflexion in the local velocity 
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profile, and with the appearance of ‘ spikes ’ a t  the downstream head ’ of the vortex 
structure. At lower amplitudes of the fundamental TS wave, interactions with 3D 
waves at  half of the frequency are favoured. The powerful nonlinear resonance which 
results from the subharmonic interaction was first described by Craik (1971), and 
Kachanov & Levchenko (1984) experimentally confirmed that this mechanism is 
active in the transition in the flat plate boundary layer. In this case, transition takes 
place by a gradual filling of the spectrum without high-shear layers or spikes ever 
appearing. 

If the initial disturbance itself is 3D and localized in space, yet another effect 
comes into play, namely the algebraic growth mechanism. While seeking to explain 
the bursting process in turbulent flow, Landahl (1975) found that a localized 
disturbance in the normal velocity (v) induces a non-decaying disturbance in the 
velocity parallel to the wall, provided the streamwise integral of v is non-vanishing 
(in wavenumber space, this means that v has contributions a t  zero streamwise 
wavenumber, a = 0). This ‘permanent scar’ is convected downstream a t  the local 
mean flow velocity, U(y), i.e. the propagation speed of the resulting flow structure 
varies with the normal position (y)  through the shear layer. Since perturbations 
located near the wall propagate at a lower speed than those parts which are located 
away from the wall, the perturbation structure is continuously elongated during its 
downstream travel. The inviscid analysis of Landahl (1980) shows that the flow 
structure elongates at a rate proportional to  time. Combined with a bounded growth 
in the wall-parallel velocity, this gives an energy growth rate a t  least as fast as time, 
i.e. the energy growth is algebraic. This result is valid for any inviscid shear flow 
subject to an initially 3D disturbance in v with contributions at a = 0, and the 
phenomenon is essentially linear and inviscid. It will henceforth be referred to as the 
linear 3D growth mechanism. 

Henningson (1988) analytically obtained a solution to the linear inviscid initial- 
value problem for the case of a piecewise linear velocity profile approximating the 
plane Poiseuille flow. The initial disturbance consisted of a pair of counter-rotating 
vortices. His analysis shows that the energy growth is due to a linear coupling 
between the normal velocity and the velocity component parallel to the wall and 
perpendicular to  the wave vector. This velocity component is proportional to the 
normal vorticity ( r ) .  He also showed that the inviscid solution consists of both a 
dispersive part and a part which is a function of x- U(y) t .  This demonstrates another 
characteristic feature of the linear 3D growth mechanism, namely the absence of 
spanwise spreading. The spanwisc propagation of the resulting flow structure is only 
due to the dispersion of oblique modes related to  the critical layer, and may be 
expected to be weak when these modes are damped. 

Owing to viscosity, the time of energy growth is limited, so that flow structures 
which have not, during their growth phase, evolved in such a way as to cause 
transition will ultimately decay. The linear 3D viscous initial-value problem was first 
treated by Gustavsson (1991), and was further elaborated by Henningson & Schmid 
(1991). The linear coupling between v and r is in this case provided by the eigenmodes 
of the Orr-Sommerfeld equation, which appear as driving terms in the 3D Squire 
equation. This means that a single Orr-Sommerfeld (v-) mode excites the whole 
spectrum of Squire (q- )  modes with different propagation velocities and different y- 
distributions. This driving may lead to a considerable energy growth associated with 
the normal vorticity even though v is decaying. The mechanism is therefore possible 
at Reynolds numbers below those at which TS waves become unstable - in fact, the 
analysis of Gustavsson shows that there is no low-Reynolds-number limit for the 
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linear 3D growth mechanism to be active. Gustavsson also discussed the nonlinear 
effects which may arise as the perturbation grows beyond the linear stage. He showed 
that the nonlinear terms are associated with streamwise gradients, but vanish for 
a = 0. 

With the object of modelling the natural development of turbulent spots, Gaster 
& Grant (1975) used a localized transient initial disturbance to  excite a wave packet 
in the flat-plate boundary layer. The initial disturbance was introduced into the 
boundary layer in the form of an air jet issuing from a small hole a t  the wall. Hot- 
wire measurements made at the boundary-layer edge revealed a wave packet with 
propagation speeds and growth characteristics in excellent agreement with the 
predictions of Gaster (1975) based on the superposition of TS waves. 

On the other hand, in many other experiments in the flat-plate boundary layer, it 
has been observed that a 3D initial disturbance can give rise to a flow structure which 
is not consistent with a TS wave packet. Such observations were reported by 
Vasudeva (1967), Wygnanski (1981), Amini & Lespinard (1982), Chambers & 
Thomas (1983), Grek, Kozlov & Ramazanov (1985) and Lismonde (1987). Most of 
these authors report that the observed flow structure had a propagation velocity of 
0.5-0.6 U ,  a t  the rear and 0.9 U ,  a t  the front, in contrast to the propagation velocity 
of the linear TS wave packet (about 0.4 U,)  studied by Gaster & Grant (1975). In 
most cases (the experiment of Vasudeva being an exception) the observed structure 
was quite narrow in the spanwise direction and had a complicated 3D structure. 
Amini & Lespinard (1982) found that the initial disturbance must penetrate the 
boundary layer in order to give rise to  a turbulent spot, and therefore they used an 
initial jet of large intensity. This gave rise to a propagating flow structure 
characterized by longitudinal streaks of alternating high and low velocity, which 
they termed an ‘incipient spot ’. Low-velocity streaks were found to join a t  the front 
of the structure giving it a U-shaped form. At the stage of transition, isolated spike- 
like regions of low-velocity, associated with a strong local inflexion in the velocity 
profile, appeared a t  the back of the U-shaped structure. The spikes were seen to 
multiply a t  the rear, giving rise to a turbulent spot. Detailed hot-wire measurements 
of this flow structure were later carried out by Lismonde (1987) in the same set-up. 
His results show that transition is preceded by an oscillating spanwise motion at the 
front, associated with a corresponding fluctuation in the wall pressure, which results 
in a loss of the spanwise symmetry of the structure. 

More recently, Tso, Chang & Blackwelder (1990) showed that an  initial disturbance 
in the form of a jet gives rise to (at  least) two different types of wave packet, and that 
the amplitude of the initial jet determines which one will dominate over the other. 
For low amplitudes, they found the dominant one to be a slowly growing wave packet 
which propagated downstream a t  the typical speed of the TS waves, as in the case 
of Gaster & Grant (1975). For larger initial amplitudes, however, a strongly growing 
transient causes transition. The transient disturbance had a propagation velocity of 
0.5 U ,  a t  the rcar and 0.9 U ,  a t  the front, in agrccmcnt with the findings of Amini 
& Lespinard (1982), and gave rise to a turbulent spot with the same leading- and 
trailing-edge celerities. 

The simultaneous occurrence of these two different transition scenarios has been 
further elucidated in a series by Cohcn, Breuer & Haritonidis (1991), Breuer & 
Haritonidis (1990) and Breuer & Landahl (1990), in which the evolution of a point- 
like disturbance is studied both numerically and experimentally. As found by Tso 
et al. (1990), the disturbance evolves in completely different ways dcpcnding on the 
initial condition. In the case studied by Cohen et al., a weak disturbance develops into 
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a bow-shaped wave packet in the outer part of the boundary layer, as observed by 
Gaster & Grant (1975). Transition occurs by a gradual filling of the spectrum owing 
to nonlinear subharmonic interactions. This development was theoretically predicted 
by Zelman & Smorodsky (1990). During this stage, 3D wave components are strongly 
growing due to the Craik resonance mechanism, and the lift-up effect described by 
Landahl (1975, 1980) gives an important contribution to the energy associated with 
the wall-parallel velocity components. For a larger and more concentrated initial 
disturbance (see Breuer & Haritonidis) a TS wave packet evolves in the outer part 
of the boundary layer, and in addition to this, an inclined shear layer structure 
caused by the lift-up effect develops in the interior of the boundary layer. The shear 
layer has a lower propagation velocity near the wall than in the outer parts of the 
boundary layer, which results in a tilting and stretching of the shear layer. The 
experimental results were compared to those obtained by solving the linear inviscid 
initial-value problem. This simplified model was able to qualitatively reproduce the 
main features of the early development of the shear layer observed in the experiment, 
demonstrating that the mechanism of initial transient of 3D shear layers is basically 
linear and inviscid. The shear structure decays further downstream, and leaves only 
the growing wave packet. For stronger disturbances, the numerical simulations of 
Breuer & Landahl show that the inclined-shear-layer structure dominates over the 
wave part of the disturbance. The nonlinear intensification of the shear layers makes 
them susceptible to wavelike secondary instabilities, which may lead to turbulent 
breakdown. 

Transition in plane Poiseuille flow can occur at Reynolds numbers substantially 
below the critical Reynolds number for Tollmien-Schlichting wave growth. This 
means that transition mechanisms involving the growth of TS waves are not at  work. 
These so-called ‘ by-pass ’ mechanisms have generally been thought of as nonlinear. 
However, the linear 3D initial growth provides a powerful mechanism for the growth 
of local disturbances which may be present in the form of background noise or 
random disturbances convected downstream from the channel inlet. 

Henningson (1991) solved the viscous initial-value problem for a localized 
disturbance in plane Poiseuille flow by decomposing the initial disturbance into 
OrrSommerfeld and Squire modes and calculating the linear time evolutions of the 
induced vorticity modes, The linear model was able to reproduce essential features 
of the initial evolution obtained by full Navier-Stokes simulations. Using 
Navier-Stokes simulations, Henningson, Lundbladh & Johansson (1991) studied the 
evolution of a localized disturbance in plane Poiseuille flow from its linear initial 
stages to the birth of a turbulent spot. They were able to separate the linear and 
nonlinear parts of the evolving flow structure by varying the amplitude of the initial 
disturbance. Beyond the linear stage, nonlinear interactions between (a, 8)- 
components generate contributions at (0,2/?), which in turn generate contributions 
a t  (0,3/3), while higher a-components are rapidly damped (p denotes the spanwise 
wavenumber). As a result of this process, which Henningson et al. termed the ‘p- 
cascade’, the a = 0 components (which are crucial in the linear initial development) 
are continually regenerated at the nonlinear stage, resulting in an enhancement of 
the normal and spanwise shear layers and of the streamwise elongation of the flow 
structure. Another consequence of this nonlinear development is that the 
perturbation structure becomes independent of the initial disturbance. 

This paper presents experimental results which show that the 3D linear growth 
mechanism can be an important factor in the transition process in plane Poiseuille 
flow. It is believed that these results may also be relevant for other wall-bounded 
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shear flows where 3D disturbances are present, and particularly in cases where 
mechanisms based on 2D TS wave growth are not operative, e.g. transition due to 
leading-edge disturbances or free-stream turbulence in boundary layers, or transition 
in plane Couette or pipe flow. Section 2 describes the experimental apparatus. In $3, 
observations on the evolution of a point-like disturbance are examined in order to 
determine to what extent the initial development is governed by the linear 3D 
mechanism. The results are obtained using an initial disturbance amplitude which is 
half as large as the amplitude required to generate a turbulent spot. Some features 
of the 3D linear eigenmodes for parameters present in the experiments are presented 
and compared to the experiments. Sections 4 and 5 show the evolution of a 
disturbance initiated with an amplitude which is large enough to trigger spot 
formation. It evolves in a similar way to the subcritical disturbances up to the point 
of maximum growth, at  which wavelike instabilities are observed. The breakdown to 
turbulence is associated with intense inclined shear layers and the appearance of 
'spikes '. The relation of these observations to similar observations in other transition 
studies is discussed in the concluding remarks. 

2. Experimental set-up 
2.1. Flow apparatus 

The general outline of the experimental set-up is shown in figure 1. The flow 
apparatus was a plane channel consisting of two 2 m long and 10 mm thick parallel 
glass plates separated by distance bars on the sides. The channel height (2h)  was 
8.2 mm with a spanwise variation less than fO.l mm, and its width was 0.83 m, 
giving an aspect ratio of 101. Air was fed into the channel from a fan with variable 
flow rate and distributed through a perforated pipe followed by two turbulence 
damping screens and a contraction of 40 : 1 before it entered the test section through 
a carefully polished entrance. The centreline velocity (U,,) was adjusted to about 
6 m/s, giving a Reynolds number (Re = U,, h / v )  of about 1600 at a fluid temperature 
of 22 "C. The background disturbance level of the flow was less than 0.15% of U,, 
at this Re. U,, was determined to within kO.1 m/s at  the actual measurement 
station using a traversable total head probe in combination with static pressure taps 
located along the upper channel wall. At  Re = 1600, the parabolic velocity profile 
could be expected to be fully developed after about 170h. Disturbances were 
introduced into the flow in the form of an air jet emanating from a 1 mm diameter 
hole in the upper channel wall ( y / h  = 1) 200h downstream of the channel inlet. The 
jet was produced by a loudspeaker, which was fed with a single square wave pulse 
of short duration (2 ms). The jet velocity (F) caused by the loudspeaker was 
proportional to the input voltage. 

Klingmann & Alfredsson (1990) used the same apparatus to study the formation 
of turbulent spots at  Re = 1600, and found a narrow range of V,/U,, between 1.5 and 
1.6, within which the probability of spot formation increased from 0 to 1. In the 
present study, disturbances resulting from three different initial jet amplitudes were 
studied, namely V,/U,. = 0.75, 1.4 and 1.6, which will be referred to as subcritical, 
near critical and critical respectively. 

2.2. Traversing mechanism 
The streamwise velocity component was measured with a single hot-wire using a 
CTA anemometer DISA 55M01. The hot wire had a sensor length of 0.8 mm and a 
wire diameter of 2.5,um, and could be traversed manually in the streamwise (x), 
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FIGURE 1. Experirnent'al apparatus. 

Hot-wire 

Aluminium beam 

FIGURE 2 .  Traversing mechanism. 

normal (y) and spanwise (2) directions. The hot-wire prongs were supported by a 
185 mm long circular ceramic beam, with a diameter of 1.8 mm. It was traversed in 
the normal direction by rotating the probe around the z-axis by means of a moveable 
wedge manoeuvred with a micrometer, as shown in figure 2. About 65% of the 
channel height was covered. The normal position of the hot wire was an 
approximately linear function of the wedge position, and the accuracy in the normal 
position was k0.015 mm (0.35% of h). The probe and the rotation mechanism were 
mounted on a 300 mm long and 4 mm thick aluminium bar which could be traversed 
in the x- and z-directions by means of two perpendicular guide systems, which were 
manually adjustable to within 0.2 mm. 

2.3.  Measurement technique and data evaluation 
The hot-wire was calibrated against the Poiseuille profile in the undisturbed channel 
flow, i.e. the normal position was translated into the corresponding velocity in a 
parabolic velocity profile. A calibration function recommended by Johansson & 
Alfredsson (1 982), 

u = l c I ( E 2 - - E y  + I c 2 ( E 4 " ) t ,  

(where E is the anemometer output voltage at, the velocity U ,  and E,  is the voltage 
a t  zero velocity) was found to  fit the general shape of the calibration curve well, over 
large velocity intervals, giving an error below 0.6% of U,, for all calibration points. 
An overheat ratio of 35 % was used. The major sources of inaccuracy in the velocity 
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measurements were due to (i) the sensitivity of the hot wire to minor temperature 
variations during the course of a measurement session, and (ii) the inaccuracy in the 
determination of the normal position. The first of these two problems was eliminated 
by recalibra%ing the hot wire as soon as a temperature drift was observed. 

The triggering and data sampling were controlled by a PDP11, using a sampling 
rate of 2 kHz. Between 10 and 50 data sets covering the passage of the disturbance 
structure were collected at each measurement position, transformed into velocity 
using the previously established calibration curve, and thereafter ensemble averaged 
on the PDP11. Since most of the results concern laminar (deterministic) flow 
behaviour, the ensemble averaging was mainly performed in order to  eliminate signal 
noise. In  the final data evaluation, which was carried out on a Macintosh SE/30, the 
disturbance velocity was evaluated by subtracting the undisturbed velocity from the 
ensemble a t  each measurement position. Since the disturbance velocity varied less 
with normal position than the Poiseuille flow profile, its accuracy is almost 
unaffected by minor deviations from the exact normal position. The final accuracy 
in the disturbance velocity is estimated to be within 0.5%. 

All quantities below are made non-dimensional using h and UcL. Unless otherwise 
stated, the presented results are deterministic, so that the ensemble average is 
representative of a single realization. 

3. Subcritical disturbances 
Subcritical disturbances were triggered using an initial disturbance about half as 

large as that required to give rise to a turbulent spot. Measurements were made by 
traversing a single-wire probe in the y- and z-directions at fixed downstream 
positions. The distance between y-positions was 0.15 in the centre of the channel and 
0.035 closer to the walls, whereas the distance between z-positions was constant and 
equal to 0.25. 

3.1. Initial spread 
Figure 3 shows a cross-channel view of contours of streamwise velocity perturbation 
(u) at the spanwise centreline ( z  = 0) close to the injection point, as a function of 
time. Note that the time axis is reversed, so that the flow direction is from left to 
right. At x = 2, a concentrated core of low-speed fluid is seen at y = 0.35. This is the 
direct consequence of the displacement of low-velocity fluid from the upper wall 
(y = 1)  towards the centre of the channel by the initial jet, and it induces an increase 
in the velocity a t  the opposite side of the channel. At x = 5, the low-speed core has 
penetrated to the channel centreline (y = 0). It is decreasing in amplitude (from 
-0.475 to -0.375), whereas the induced perturbations in the lower part of the 
channel have increased (from 0.025 to 0.075). A t  x = 15, the initial disturbance 
continues to fade, while the induced perturbations increase. The near wall parts of 
the structure propagate more slowly than in the part located a t  the centre of the 
channel, resulting in a more and more elongated normal shear structure. At x = 30, 
a low-velocity lump moving ahead of the structure remains as a reminiscence of the 
initial jet. Also the induced perturbations seem to be decreasing in amplitude. 
Howevcr, the structure as a whole is still in a process of growth, expanding and 
intensifying in the spanwise and streamwise directions. Strong normal and spanwise 
shear layers are found away from z = 0. As a consequence of the asymmetric way in 
which the initial disturbance was introduced, the induced perturbation structure 
extends further upstream and the shear is stronger in the lower part of the channel 
than in the upper part. 
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FIQURE 3. Cross-channel contours of streamwise perturbation velocity (u) at z = 0 for subcritical 
initial disturbance amplitude ( K  = 0.75). Contour spacing is 0.5% of UcL. (a) x = 2; min -0.475; 
max 0.025. (b) x = 5;  rnin -0.325; max 0.075. (c) x = 15; min -0.125; max 0.175. (d )  x = 30; min 
-0.075: max 0.125. 

3.2. Evolution and spanwise structure 
The streamwise extension of the disturbance was found to increase almost uniformly 
with downstream distance. Making use of this property, the conical coordinate, 

E = x / ( t - t o ) ,  
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FIGURE 4 
FIQURE 4. Spanwise contours of u at y = +0.5 for 4 = 0.75. Levels are f 1 YO, f3%, etc. 

FIGURE 5. As in figure 4 for y = -0.5. 

is introduced, which can be directly interpreted as the propagation velocities for the 
different parts of the structure. Figures 4 and 5 show the spanwise distribution 
perturbation velocity (u) in the (&z)-plane y = k0.5 respectively, obtained by 
spanwise traverses at a number of fixed x-positions (x = 10, 20, 35, 50, 73 and 90). 
The level spacing is 2 % of UcL. A good representation of the near-uniformity of the 
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downstream growth was obtained choosing a value of to = 3.6, corresponding to an 
initial time delay of 2.5 ms, which is of the order of the effective triggering time. 

At x = 10, the strong negative disturbance velocity resulting from the initial jet 
can be seen a t  the upstream (left-hand) side of the disturbance in the upper half of 
the channel (figure 4a). It induces a pattern of alternating high- and low-velocity 
regions which are also seen in the opposite part of the channel. While the effect of the 
initial jet itself decays further downstream, the induced pattern develops oblique 
lobes at  the front. These are swept back as they travel downstream, evolving into 
elongated streaks of alternating high and low velocity. The spanwise position of the 
streaks is fairly constant at all downstream positions, and the small spreading is 
mainly due to  the appearance of new streaks. Hence there is no spanwise propagation. 
Owing to  this regular spanwise structure, the amplitude of the streamwise 
perturbation velocity (u) can be taken as approximately proportional to  its spanwise 
gradient (aulaz). The measurements of Breuer & Haritonidis (1990) for a similar case 
in the boundary-layer flow show that the spanwise velocity (w) is about half as large 
as the streamwise velocity, and that its streamwise gradients are much smaller than 
au/az. The normal vorticity (7 = au/az- awlax) may therefore be approximated by 

The streaks extend further upstream in the lower part of the channel, i.e. on the 
side opposite to the triggering, and the perturbation amplitude is higher there. The 
inner streaks in figure 5 are seen to  join at  the front, giving a V-shaped low-velocity 
region pointing in the downstream direction. The front of the structure propagates 
at a velocity of 6 = 0.82, whereas the rear is found a t  6 = 0.65 in the upper half of the 
channel and at  6 = 0.55 in the lower part. The spanwise gradients are most intense 
for c between 0.65 to 0.75, and the perturbation velocity is largest a t  the central low- 
speed streaks ( z  = +0.85), with u reaching a maximum amplitude of 13 % a t  x = 35. 
Past x = 50, the local intensity of u decay in both the upper and the lower parts of 
the channel, while the streamwise extension of the structure is still growing. Note 
that a constant length in the conical coordinate system means a constant streamwise 
elongation in physical space (see also Klingmann 1991). This is a characteristic 
feature of the inviscid linear 3D growth mechanism of Landahl (1980). Another 
characteristic present here is the lack of spanwise propagation (cf. Breuer & Landahl 
1990). These observations indicate that the evolution of the perturbation structure 
is governed by the linear 3D mechanism, although nonlinear effects should be 
expected a t  the present u-amplitudes. 

au/az. 

3.3. Cross-channel distribution 
Isocontours of the streamwise velocity (U = Upois + u)  are shown in figure 6 for two 
different spanwise positions. z = 0.85 corresponds to the position of the most intense 
low-velocity streak, and z = -1.35 to the outer part where the streak pattern is 
oblique. Inclined layers of enhanced normal shear are seen near 6 = 0.8 and near 
6 = 0.65, corresponding to the central low-velocity region in figure 5(c). The loci 
where U is equal to  the propagation velocity 6 are marked with a coarse line. To the 
left of this line, the local velocity is higher than the propagation velocity. This line 
tends to be aligned with the shear layers, showing that they propagate downstream 
at the velocity of the local flow. This behaviour is again characteristic of the linear 
3D mechanism, by which horizontal velocity disturbances are carried downstream 
with the local velocity of the basic flow. However, the shear layer in figure @does not 
follow the undisturbed flow velocity (Up,,,) but instead moves at the disturbed 
velocity U ,  indicating a nonlinear modification of the flow. 
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FIGIJRE 6. Cross-channel contours of the streamwise velocity U = UpOis+u at J: = 35. 

Levels are 0.025, 0.075, etc. = 0.75. (a) z = 0.85. ( b )  z = 1.34. 

Figure 7 shows cross-channel views of the perturbation velocity a t  x = 35 for 
different times through the passage of the disturbance structure. A system of 
alternating high- and low-velocity streaks is seen to split off the centre (y = z = 0) at  
the front and extend towards the upper and lower channel walls respectively. The 
front of the structure appears first as a low-velocity perturbation at  y = z = 0, 
6 = 0.90, which at 6 = 0.85 is divided into a pair of low-speed streaks tending towards 
the upper part of the channel and centred at  z = f0.5, whereas a pair of high-speed 
streaks appears in the lower part. At 6 = 0.82, a new pair of low-speed streaks splits 
away from the centre above the high-speed region. They move outward to a spanwise 
position of z = f0.85, and further downstream approach the lower wall. The 
perturbation velocity is most intense at  6 = 0.74, reaching an amplitude of almost 
15%. At that time they are centred at  y=-0.4. Both normal (7 xau/az) and 
spanwise (z au/ay) perturbation vorticity is present. The inclination of the shear 
layers in the (y,z)-plane may also be an indication of streamwise vorticity 
( = av/az - aw/ay) transporting low-speed fluid from the wall towards the interior of 
the channel and displacing it outwards in the spanwise direction. These observations 
give a picture of two oblique V-shaped shear layers, with downstream pointing 
‘heads’ which join at  the centre of the channel, and ‘legs’ which extend upstream 
towards the upper and lower walls respectively. The structure is reminiscent of the 
A -vortices which characterize the TS wave transition. However, it will be seen in the 
following sections that the V-shaped structure does not play the same role as a A - 
vortex in the transition to turbulence. 

3.4. Energy growth and decay 
The data in figures 4 and 5 were transformed into frequency and spanwise 
wavenumber space using a double Fourier transform defined by 

Z;(w,/3) = [o*[zu(t, z)exp{-id-iipz}dzdt, 

(where Tis the maximum time period and 2 the spanwise domain), and approximated 
by 

M $N c 
3-0 k-- i  

zi(wm, f in )  = c u(tj, z k )  exp { - iwm tj-ipn z k }  AzAt, 
2N 

wit.h t j  = j A t ,  wm = 2nm/MAt, 
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FIGURE 7 .  Contours of u in the (y, 2)-plane a t  5 = 35 for different times through the passage of the 
disturbance structure. Values of 6 are indicated in each figure. Levels at f 1 Yo, + 3  Yo, etc. = 0.75. 

and zk = kAz, p ,  = 27cn/NAz, 

At is the time between two successive samples (0.72 in non-dimensional units) and Az 
the distance between the spanwise measurement positions (0.244). The number of 
timesteps ( M )  was 512, covering the evolution of the disturbance a t  all streamwise 
positions measured. The number of spanwise measurement points was increased with 
the undisturbed (zero) value up to N = 64. 
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* B 
FIGURE 8. Spanwise energy distribution ez(,8) obtained from data shown in figures 3 and 4. 

(a) y = 0.5. ( b )  y = -0.5. 

From the Parseval identity, the perturbation energy per unit length normal to the 
wall in the (t,z)-plane is 

The quantities 

1 t N  

e 2 ( ~ )  = ix j'-: I G ( ~ ,  ~)12dw = - E IG(wm, P ) I ~ / M A ~ ,  
2 m--$M 

are functions of angular frequency and spanwise wavenumber respectively, w .,.>h are 
independent of M, N ,  At and Az, and will be referred to as the energy densities, since 
E can be expressed in terms of el and e2 as 
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FIGURE 10. Energy distribution over frequencies, q ( w )  a t  (a )  y = k0.5. (6) y = 0.5. = 0.75. 

Figure 8(a ,  b)  shows the spanwise energy density e, (P)  a t  y = kO.5, obtained from 
the data in figures 4 and 5 .  The energy is concentrated in a range of wavenumbers 
between P = 3 and 4 a t  all downstream positions, with a drift towards slightly higher 
p a t  far downstream positions. This corresponds to a spanwise peak-to-peak distance 
slightly less than 2h. At x = 35 and 50, a minor amount of energy is also found a t  
P = 7,  i.e. the first harmonic of the dominating spanwise wavenumber. It appears 
only in the lower part of the channel, where the perturbation amplitude is largest. 

The downstream evolution of the energy distribution was obtained by undertaking 
z-traverses a t  y = kO.5 a t  15 different x-positions between 5 and 90. Figure 9 shows 
the evolution of the energy ( E )  per unit length normal to the wall in the plane 
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y = f0.5. In  the upper part of the channel, the energy remains at an almost constant 
low level during the whole evolution, indicating that the decrease in local u- 
amplitude seen in figure 4 is balanced by the increase in streamwise extent. In the 
lower part of the channel, however, the energy increases linearly down to x = 40 and 
thereafter slowly decreases. Owing to the continuous elongation of the structure, the 
maximum in E occurs further downstream (at  x = 40) than the maximum amplitude 
of u (x = 30). It is only far downstream that the energies in the upper and lower parts 
of the channel level out. 

The energy distribution over frequencies, e , (w) ,  is shown in figure 10(a, b)  for 
y = f0.5. In  the initial phase, much of the energy at y = k0.5 is due to the initial 
disturbance, which is reflected as a maximum in el near e ,  near w = 0.2 for x = 35 in 
figure lO(a). As the disturbance moves downstream, more and more energy is 
concentrated at low values of w ,  reflecting the elongation of the structure. This 
process is evident in both the lower and the upper parts of the channel. Figure 11 
shows the energy evolution for specific frequencies between 0.05 and 0.5. The growth- 
decay behaviour is most evident in the lower half of the channel, where the energy 
densities have maxima between x = 30 (for w = 0.5) and x = 50 (for w = 0.05). In  the 
upper part, only the frequencies below 0.2 experience growth, and the maxima occur 
further downstream than in the lower part. This non-uniformity between the upper 
and lower parts of the channel indicates that  low-frequency energy is redistributed 
from the lower to the upper part of the channel during the downstream evolution. 

In summary, more and more energy is concentrated a t  low frequencies during the 
downstream evolution of the perturbation structure. This trend corresponds to the 
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algebraic growth of zero wavenumber disturbances in the inviscid theory of Landahl 
(1980). It will be seen in the following that the longer lifetime of low-frequency 
components is also predicted by the viscous linear theory. 

3.5. Some aspects of the 3 0  Orr-Sommerfeld-Squire spectrum 
One of the main characteristics of the linear inviscid development of a 3D 
disturbance is that  the propagation velocity of the perturbation structure is linked 
to the local velocity U(y), and it was seen above (figures 6 and 7)  that the 
perturbation structure studied in this experiment possesses this property. In  the 
viscous theory, this feature is less evident, since the perturbation structure as a 
superposition of modes from the whole spectrum of the forced Squire equation. 

Figure 12 shows the spectra of the Orr-Sommerfeld (0s) and Squire equations for 
plane Poiseuille flow at Re = 1600, a = 0.1, = 3.5, The eigenvalue problem was 
solved using a spectral collocation method (see Appendix for details of the 
calculations). The spectrum was classified by Mack (1976) into three branches named 
A ,  P and S. The most damped modes correspond to eigenvalues on the S-branch, 
which have real parts (c , )  approaching f .  The corresponding mode shapes have their 
maxima about mid-way between the wall and the channel centreline. Eigenvalues on 
the P-branch modes have phase speeds between $ and 1,  and are maximum near the 
centreline, whereas A-branch modes have low propagation velocities, and the mode 
shape is maximum near the walls. Classical stability theory is only concerned with 
the least stable 0s mode (the TS wave), which is normally found on the A-branch. 
In contrast, the 3D initial growth of normal vorticity results because each 3D 0s 
mode acts as a driving term in the 3D Squire equation, and excites the whole 
spectrum of Squire modes. The superposition of modes with different propagation 
velocities and cross-channel profiles will therefore result in a structure for which the 
propagation speed varies with y, the slowly moving parts near the wall representing 
contributions from the A-branch and the fast moving parts near the centreline 
contributions from the P-branch. Henningson (1991) found that 0s modes on the P-  
branch give rise to a streaky structure, whereas A-modes (c ,  < $) give a dispersive 
wave behaviour. An interesting feature of the spectrum shown in figure 12 is that 
there are no 0s eigenvalues on the A-branch, i.e. there are no TS waves for the 
parameter combination of interest in the present experiment. Instead, the three 
least damped 0s modes are located on the P-branch. 

On the S-branch, the eigenvalues of the 0s and Squire equations almost coincide, 
giving a near resonance in the coupling between the two equations. This is the reason 
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FIGURE 13. Variation of the eigenvalue spectra with a at Re = 1600, /3 = 3.5 for the three least 
stable modes. (a) Orr-Sommerfeld equation, ( b )  Squire equation. 

why the S-branch modes are important in the 3D linear growth despite the fact that 
they are not the least damped ones. An 0s mode with a symmetric mode shape will 
excite Squire modes having antisymmetric mode shapes. Note that the near- 
resonating 0s and Squire modes on the S-branch have this symmetry relation. 

Whereas the damping rate ( -aci) increases slowly with increasing /3, it  is highly 
sensitive to a. The decay rates of v and 7 are smallest for low a. This is shown in figure 
13 for the three least stable modes of the spectra a t  fixed Re = 1600. For small a, the 
eigenvalues are located as in figure 12. With increasing a, the damping rates increase, 
and the eigenvalues are distributed further out on the A -  and P-branches. This means 
that the low-wavenumber components of the initial disturbance have a longer 
lifetime and a more confined range of propagation velocities than the high- 
wavenumber components. 

3.6. The 30 linear initial growth 
The growth phenomenon is due to the fact that the whole spectrum of the Squire 
equation is excited. Since these modes are non-orthogonal, the energy of the sum of 
Squire modes is not the same as the sum of energies associated with the single modes. 
At t = 0, free and forced vorticity modes must combine so as to satisfy a given initial 
condition. The time evolution of this mode combination is the time evolution of the 
total normal vorticity. This is in brief the method of decomposition into eigenmodes 
suggested by Henningson (1991), which was used to obtain the results below (details 
of the calculations are given in the Appendix). Figure 14 shows that time evolution 
of the perturbation energy (T) associated with the normal vorticity for /3 = 3.5, 
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Re = 1600, when only the least damped 0s mode is used as a driving mode (this mode 
dominates the time evolution for small a). The perturbation energy grows up to a 
time (tmaX), and thereafter decays. Figure 14 shows that t,,, increases as a decreases, 
and that the growth time is larger when the driving mode is symmetric (figure 14a) 
than when it is antisymmetric. 

Gustavsson (1991) showed that t,,, is proportional to Re, and that i t  depends 
essentially on the parameter aRe. Klingmann & Alfredsson (1990) studied the 
downstream evolution of u at fixed y and z for various Re. They found that the 
amplitude of u showed thc characteristic growthldecay behaviour, reaching a 
maximum a t  a time which is proportional to Re, in agreement with linear 3D viscous 
theory. In the present experiment, u was integrated in the spanwise direction and in 
time, so as to also take into account the growth caused by the continuous streamwise 
elongation. The result (figure 11)  is qualitatively similar to that in figure 14. 
However, in order to make a quantitative comparison oft,,, between experiment 
and theory, it would be necessary to assess the time evolution and wavenumber 
decomposition of the energy associated with the entire spatial structure of the 
perturbation, i.e. 

as a function of time. Since the present measurements are limited to two y-positions, 
y = +0.5, and the 'energy ' E  is an integral over time instead of over x, a comparison 
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between experimental and theoretical growth times can only be based on an 
estimate. We shall assume that v and w are much smaller than u, and that x and w 
can be transformed to  t and a by taking 6 = $ to  be the typical propagation speed of 
the perturbation structure. 

Figure 14 shows that for a = 0.075 (corresponding to w = 0.05 in the experiment), 
the energy maximum occurs at t,,, = 58, and for a = 0.15 (w = 0.10) a t  t,, = 40. A 
disturbance propagating at 6 = $ will then be a t  x,,, = 39 and 27 respectively. This 
may be compared to the curves in figure 11,  which show the time evolution of the 
low-wavenumber parts of the disturbance. The energy maximum of the low- 
frequency components (w = 0.05 and 0.10) are between x,,, = 45 (lower part of the 
channel) and xmax = 75 (upper part). One could take into account that  the onset of 
the algebraic growth is not a t  x = 0, but probably a t  about x = 15, giving an 
experimental x,,, somewhere between 30 and 60. Hence the growth times obtained 
from the 3D linear initial-value problem are of a similar size to those observed in the 
experiment, but it is evident that  the observed perturbation structure grows for a 
longer time than predicted by theory. 

The results so far may be summarized as follows: the present experiments show 
that normal vorticity structures propagate a t  speeds between 0.55 and 0.85. The 
slower moving parts of the structure are found near the walls, whereas the front part 
is in the centre of the channel. This is consistent with the general features of the 
eigenvalue spectra of the 0s and Squire equations. The region of strongest spanwise 
shear (normal vorticity) propagates at 5 % 0.7, and the cross-channel maximum of 
the disturbance is about midway between the wall and the centreline. These features 
are consistent with those of low a Squire modes, which for the parameters of this 
experiment arc located mainly on the P- and S-branches. The largest growth rates 
and survival times of such modes are obtained when the streamwise wavenumber a 
approaches zero. Assuming that a point-like initial disturbance excites a flat 
spectrum of wavenumbers, the high-wavenumber part will decay quickly, whereas 
the low-wavenumber part will survive for a longer time and will be observable as 
growing elongated streaks. The streak structures observed in the experiments 
display this feature. They also show the growthldecay behaviour characteristic of 
the viscous linear mechanism. However, the low-frequency components grow for a 
longer time than predicted by linear theory. This may be the result of the nonlinear 
/?-cascade described by Henningson et al. (1991), which leads to  the regeneration of 
a = 0 components, and hence an increase of the low-frequency contributions. The 
appearance of higher harmonics in /3 (figure 8b) at far downstream positions also 
supports this idea. 

4. Near critical disturbances 
In  the previous section, a disturbance of subcritical initial amplitude was found to 

evolve into a V-shaped structure with ‘legs’ in the form of elongated streaks of 
normal and spanwise shear with a fixed spanwise spacing. The energy of the induced 
perturbation structure was seen to grow up to a streamwise position of about x = 40, 
and thereafter slowly decay. In the following section, results for an initial amplitude 
just below the levcl required to create a turbulent spot are presented. The 
development is followed through both the growth and decay stages. 
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4.1. Evolution and spanwise structure 
Figure 15 shows the spanwise distribution of u measured at  x/h = 10,20, 35, 50 and 
73 for the near critical disturbance. The normal position is midway between the 
channel centreline and the lower wall. The level spacing is 5% of UcL. The virtual 
time origin to was taken to be 2.2 (1.5 ms). Initially, the overall shape of a forward 
pointing V is similar to that in the subcritical case. However, a closer comparison at 
x = 10 (figure 15a), shows that the critical disturbance results in a more complex 
initial structure than in the subcritical case. Two interconnected low-velocity regions 
are seen at  z = f0.5 and k 1.2, travelling at 6 = 0.7 and 0.6 respectively. These are 
stretched and separated downstream. The ‘pinched off’ low-speed legs a t  the rear are 
a feature introduced by the larger initial disturbance. In the subcritical case, 
streamwise gradients are only present at the front, and the front and rear parts do 
not grow apart until the decay phase (figure 5e). As in the subcritical case, the streaks 
do not spread in the spanwise direction, but the structure expands laterally by the 
appearance of new streaks on the flanks. These are skewed and part in the same way 
as the inner low-velocity streaks. The length and intensity of the streaks increase up 
to about x = 50, and thereafter begin to decay. Note that the streamwise extent of 
the structure is quite large in physical space. The ‘aspect ratio’ (AtV,,/Az) of the 
streaks at  x / h  = 50 is about 20. The maximum local amplitude in u is above 20 % at 
x = 50. Past x = 50, the rear streaks fa.de away, as does the whole central and rear 
region, leaving a structure with less streamwise variations at  x = 73. However, the 
amplitude is still growing at  the outer streaks, and new ones keep appearing. In the 
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upper part of the channel (figure 16), the perturbation amplitude is lower and the 
streamwise extension is smaller. Streamwise gradients are almost absent, and the 
shape of the disturbance structure is similar to the one obtained in figure 4 with a 
lower input amplitude, although it is 2-3 times larger. There are no clear symmetry 
properties, but anti-symmetric structures seem to be dominating at  x = 73 (see 
figures 15e and 16b). 

Figure 17 shows the spanwise energy distribution a t  x = 35,50 and 73. A t  all three 
x-positions, contributions from wavenumbers near 3 are seen, corresponding to  the 
high and low velocity streaks at  z = f 1.2. The energy at p = 3 decreases downstream, 
and contributions near ,8 = 5 appear past x = 50. This corresponds to the fading of 

1 FLM 240 
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(a )  z = 35, t = - 1.2. ( b )  x = 50, z = -0.4. 

the rear streaks at z = k 1.2 and the continued amplitude growth at  the narrower 
streaks at  6 = 0.65-0.8 (see figure 15). By comparing the areas below the curves in 
figure 17, i t  is evident that the total energy E in the ( t ,  2)-plane is largest at x = 50. 

4.2. Cross-ch.annel distribution 
Figure 18 shows the cross-channel distribution of u along the lines z = - 1.2 at  x = 35 
and z = -0.4 a t  x = 50. The former corresponds to the pinched-off low-velocity 
regions at  the rear, and the latter to the central low-velocity streaks which can be 
seen in figure 15. As in the subcritical case, the shear layers are seen to connect at the 
local (distorted) mean velocity, i.e. 5 = U(y). The corresponding isocontours of the 
total normal shear (tlU/tly) are shown in figure 19. Figure 19(a) displays two inclined 
shear layers in the lower part of the channel with a low shear region in between, 
which corresponds to the intense high-speed regions at z = k 1.2. A weaker shear 
layer extends from the upper wall and interferes with the lowcr ones in the centre of 
the channel. Both layers arc associated with negative streamwise gradient 
(au/ax < 0). At x = 50, the low-velocity region a t  the rear is less intense, and the 
shear layer associated with it is less pronounced. Here, the central streaks are 
associated with the strongest shcar, and the perturbations reach across the centreline. 
The shear layers in figure 19 resemble the high-shear layers preceding the formation 
of ‘spikes’ in the Klebanoff transition (cf. Nishioka, Asai & Iida 1981, or Krist & 
Zang 1987). The intensity and normal position of the shear layer are similar to those 
in the early stages in the simulation by Krist & Zang a t  Re = 1500 (see their figure 
17). However, in the Klebanoff transition the high shear layer is associated with the 
‘head ’ of a A -vortex, whereas the shear layer in figure 19 ( a )  is located at the rear 
of the V-shaped structure and not a t  its head. 

5. Critical disturbances and spot formation 
Near the critical initial amplitude, a small incrcasc can change the development of 

the perturbation structure from laminar decay to turbulence. When the initial 
disturbance amplitude was increased from = 1.4 to 1.5, the velocity signals became 
less deterministic, and a wavelike instability appeared a t  the front of the structure. 
Upon further increase to = 1.6. spikclike velocity signals were observed at  the 
centreline of the channel. Both of these phenomena seem to be associated with the 
shear layers a t  the upstream legs of the V-shaped structure. 

A spanwise view of the disturbance structure at x = 50, y = -0.5 for 6 = 1.6 is 
shown in figure 20. The motion is now less deterministic than in the previous cases. 
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The overall structure is similar to the corresponding near-critical disturbance in 
figure 15(d). However, the rearward low-speed streaks at  z = f 1.2 observed in figure 
15 ( d )  are not present any more, whereas the (negative) amplitude of u at the central 
low-speed streaks (z = k0 .5 )  is increased in comparison with figure 15(d). These 
streaks have distinct wavelike wiggles, indicative of an unsteady spanwise velocity 
component. Figure 20 also shows that the spanwise symmetry (which is still quite 
good in the near-critical case in figure 15d) is lost. Similar measurements at z / h  = 73 
show that the streaks are disrupted by non-deterministic motion, giving an apparent 
relaxation of the streamwise gradients in the ensemble average. 

Ensemble average velocity traces collected at  x = -0.5, y = -0.5 (figure 21) 
clearly show a wavy motion at  the front of the flow structure. An initial disturbance 
amplitude of = 1.5 was used so as to be able to follow the wave motion downstream 
without transition occurring. A t  this stage, the disturbance is no longer deterministic, 
and the amplitude of u at the low-speed streak as well as the amplitude of the waves 
differ greatly between realizations. In some cases, the low-speed streak is dissolved 
and only a large-amplitude wave motion is seen. The waves are stationary with 
respect to the front part of the low-speed regions, i.e. they propagate at the same 
speed (6 = 0.8). Their angular frequency ( w ) ,  obtained after high-pass filtering of the 
velocity signal, is 1.3, i.e. an order of magnitude larger than for the low-speed streak 
itself. 

7-2 
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FIGURE 23. Traces of streamwise velocity ( U )  at y = z = 0 for = 1.6. 

Figure 22 shows contour lines of ensemble-averaged streamwise perturbation 
velocity in a cross-channel view a t  z /h  = 50, z = 0 for V, = 1.4 and 1.6. For V, = 1.6, 
the motion is no longer completely deterministic, so that the ensemble average gives 
a smeared-out picture of the actual velocity distribution in a single realization. The 
low-velocity region a t  the front near y = 0 represents the ‘head’ of the V-shaped 
structure. It is created by the initial disturbance and is present during the whole 
evolution of the disturbance structure. In  figure 2 2 ( b ) ,  a more intense low-speed 
region is also seen at the rear (a corresponding region can only be vaguely seen in the 
near-critical case, see figure 22a). It appears as the passage of a spike in the velocity 
traces. Its location (6 = 0.70, y x -0.3) corresponds to  the position beneath the shear 
layer in figure 19(b), which was seen to be similar to the high-shear layers associated 
with spikes in the Klebanoff transition. However, the location of the spike and of the 
associated shear layer with respect to the entire flow structure is different. 

Velocity traces at the centreline (figure 23) show the appearance of the spike and 
its downstream propagation. Dashed lines show ensemble averages, and full lines 
show selected individual realizations displaying enhanced non-deterministic features. 
At x = 50, a distinct spike appears a t  the rear of the structure. The time at which this 
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spike first appears is deterministic, whereas its amplitude varies, reaching in some 
cases about 25 % of UcL. The propagation speed of the spike is estimated to  be about 
0.7. Further downstream, the spikes multiply and break down to small-scale 
turbulent motion. This cascade repeats itself, so that a t  x/h = 90 a fully turbulent 
rear part has formed. With increasing &, the process of spot formation takes place 
further upstream, e.g. for & = 5.0, a turbulent rear begins to form a t  x = 20. The 
further development of this turbulent spot has been described in detail in previous 
works (see Klingmann & Alfredsson 1990). 

6. Concluding remarks 
A point-like disturbance in the form of a localized short-duration jet introduced in 

plane channel flow a t  Re = 1600 was found to develop in three stages: (i) an initial 
phase, in which the jet lifts up slow moving fluid from the wall into the channel and 
sets up a flow with spanwise and normal shear, (ii) a phase of growth of the 
disturbance amplitude and streamwise extension and (iii) decay, alternatively, 
formation of a turbulent spot. The first of these stages is probably nonlinear. 
However, the large flow disturbance cause directly by the jet does not result in 
fluctuating turbulent motion. It is quickly damped and redistributed into 
downstream-pointing V-shaped structures associated with large spanwise and normal 
shear. This flow structure displays all the typical features of the linear 3D growth 
mechanism : (i) It elongates a t  a constant rate during its downstream travel; (ii) the 
shear layers propagate with the local streamwise velocity; (iii) there is no spanwise 
propagation, but there is a small spanwise spreading owing to the appearance of new 
streaks at the flanks of the perturbations structure ; and finally (iii) the energy of the 
perturbation structure displays growth followed by decay on the timescale predicted 
by solving the viscous linear 3D initial-value problem. However, a feature which is 
difficult to  explain within the framework of this theory is the well-defined spanwise 
wavenumber observed in the experiment. The asymptotic analysis of Gustavsson 
for a = 0 gives the largest growth rates for p between 2 and 2.5, and one would expect 
to find these wavenumbers in an experiment which does not favour any specific 
spanwise wavenumber. However, in the present experiment (as well as in previous 
experiments using the same set-up reported by Klingmann & Alfredsson 1990) the 
energy is concentrated at  p between 3 and 3.5 and at /3 = 5. 

It is quite surprising that a large-amplitude initial disturbance can produce flow 
structure which seems to behave according to  the linear 3D growth theory. The role 
of the initial jet is to set up a 3D structure with a spanwise variation. This can also 
be accomplished by other types of disturbances. For examples, in the numerical 
study by Henningson et al. (1991), two counter-rotating pairs of streamwise vortices 
with an amplitude small enough to guarantee linearity were used as an initial jet. 
This resulted in a flow structure quite similar to that seen in figure 5, without 
involving any nonlinear initial processes. The natural appearance of turbulent spots 
has been observed in channel flow even at Re below 1600 (cf. Carlson, Widnall & 
Peeters 1982), but little is known about the nature of the disturbances causing this 
transition. Uncontrolled background disturbances are not likely to have the 
concentrated form used in controlled experiments. It is possible, however, that  large- 
scale 3D disturbances present under ‘natural ’ flow conditions may initiate the linear 
3D growth mechanism, resulting in flow structures similar to those studied in this 
work. An interesting issue to pursue would therefore be to assess what kind of initial 
disturbance is the most efficient in exciting the linear 3D growth. 



192 B. G. B. Klingmann 

At the present Re, an initial jet amplitude of the order of the maximum velocity 
in the channel is necessary to trigger a turbulent spot. This introduces an initial 
energy (2hnR2T, where R is the radius of the jet, and the jet velocity = 1.5) of 
about 0.2 in non-dimensional units, which may be compared with the initial energy 
necessary to trigger TS wave transition. In  numerical experiments on forced TS wave 
transition in plane channel flow, a wave amplitude of q.1 is necessary to give 
transition at Re = 1600. The initial energy supplied (A2S-,vTSdy, where A is the 
wavelength and vTs the amplitude of the TS wave) is approximately the same as that 
supplied by the initial jet in the present experiments. 

An initial jet which is just sufficient to trigger a turbulent spot gives a similar 
development up to a stage a t  which non-deterministic motion is observed in the form 
of spikes appearing at  locations of high normal shear. The perturbation structure in 
this case differs from the subcritical one in that the upstream legs of the V-shaped 
structures are pinched off by negative streamwise gradients associated with intense 
inclined normal-shear layers. The prcsence of these shear layers could be tracked to 
the early stages of development. At the critical initial amplitude, spikes are observed 
a t  z = 0. Owing to the non-deterministic behaviour of the disturbance at this stage, 
it is difficult to  give a precise picture of the cross-channel velocity distribution 
associated with the spike by traversing a single hot wire. However, ensemble- 
averaged data show that the first spike is associated with a low-speed region 
upstream of the head of the V-structure. 

These results are closely related to the numerical results obtained by Henningson 
et al. (1991), and also bear a strong resemblance with those obtained by Amini & 
Lespinard (1982) under similar conditions in boundary-layer flow. The intense shear 
layers are similar to the high-shear layer associated with spikes in the Klebanoff 
transition. However, neither the shear layer nor the spike are related to  the rest of 
the flow structure in the way that the Klebanoff high-shear layer and spike are 
related to the A-vortex. They propagate a t  6 = 0.7, and it seems as if the spike 
constitutes the head of a newborn V-structure. 

Another interesting observation at the transition stage is the appearance of a 
wavelike spanwise motion and the loss of spanwise symmetry. The waves are most 
clearly seen at  the front of the structure. It is possible that these waves are related 
to waves observed a t  the stage of spot formation in boundary layers (cf. Gad-el-Hak, 
Blackwelder & Riley 1981; Chambers & Thomas 1983; Lismonde 1987). The 
‘incipient spot ’ investigated by Lismonde has many features in common with the 
present results. Also Chambers & Thomas observed that the wavy motion was 
associated with a lift-up of streaks from the wall, a description which is not 
inconsistent with the present observations. 

This work is sponsored by the Fluid dynamic research program of the National 
Board for Industrial and Technical Development (NUTEK). Professor P. H. 
Alfredsson has contributed to the present work with invaluable advice, criticism and 
support. I also wish to thank Dr R. Shanthini, who has helped me to gain a deeper 
insight into 3D linear theory. 

Appendix 
The OrrSommerfeld (A 1 )  and the Squire (A2) equations describe the stability of 

a small wave disturbance in the normal velocity (v) and vorticity (7) with streamwise 
and spanwise wavenumbers 01 and /3, respectively (k2  = ct2 +p2) ,  



Transition due to three-dimensional disturbances 193 

(A2) 
1 
- (D2-k2) $- (U-  A )  $ = i/3ReU’$, 
iaRe 

where ‘hat ’ denotes the eigenfunction of the disturbance and c, A are the complex 
eigenvalues of the OS-equation and Squire equation, respectively. U is a parallel 
shear flow with normal derivatives U’ and U”, and D denotes slay. An arbitrary 
normal velocity disturbance can be written as a sum of the 0s eigenmodes 

m 

w(x,y,z,t) = C ~ n ( ~ ) ~ ~ p [ i ( a x + / 3 z ) - i a c n t ] ,  
n-1 

whereas the normal vorticity is a combination of free and forced 
modes 

a, 

r(x, y, 2, t )  = C $,(y) exp [;(ax + P z ) ]  exp[ - iah, t] 
m-1 

m 

(by v)  vorticity 

+ 2 irt((y) exp [ i a x + ~ z ) ]  exp 1- iac, t]. 
n-1 

The phase velocities cn and A, are eigenvalues (which will be taken as complex) and 
$,(y) and $,(y) are complex eigenfunctions of ( A l )  and (A2). $rt are the 
eigenfunctions corresponding to the normal vorticity induced by G n .  

The eigenvalue problems (A 1 )  and (A2),  subject to the boundary conditions 

6(+1)  = D$(&1) = 0, ij(+l) = 0, (A 3) 

were solved by a spectral collocation method, in which v and 7 are expanded into a 
scries of Chebyshev polynomials truncated at M = 50 and evaluated a t  the normal 
positions 

y, = cos- nj (i = 0, ..., M ) .  
2M- 1 

The boundary conditions (A3) were applied a t j  = 0 and 1, and symmetry conditions 
were imposed by selecting either symmetric or antisymmetric Chebyshev poly- 
nomials. The eigenvalue problem was solved using standard routines in double 
precision, and was found to agree to within all significant numbers with the test case 
given by Orszag (1971). For small enough a, the eigenvalues and mode shapes 
approach those analytically derived by Gustavsson (1991) for the asymptotic case 
& e + O  (for Re = 1600, a < 0.02 is sufficiently small to consider aRe practically 
equal to zero). 

Following Henningson (1991), the time evolution of normal vorticity for a specific 
wavenumbcr may be calculated as 

m m  

q(x,y,z,t) = C C $m(Y)Dn,exp [ i (a~+Pz)I  (exp [-iacntI-e~p[-iaA,tI). 
n-1 m-1 

I n  the above expression, the initial normal vorticity present at t = 0 is being taken 
as zero. The driving coefficients Dnm are obtained as 
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where K ,  is a measure of the influence of the nth Orr-Sommerfeld mode in the initial 
distribution ofv. The energy of 7 is defined as T = sr,y* dy, where * denotes complex 
conjugate. In the data presented in $3,  the normal vorticity was normalized by 
$77 dy, and the normal velocity was normalized such that v = 1 a t  the position of its 
maximum. The time evolution of 7 was calculated using only the least damped OS- 
mode as the driving term and the 20 least stable Squire modes. K ,  was chosen 
arbitrarily as 0.01. 
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